Version 1.0, 2014-09-19

The Biorefinery Fact Sheet

Gerfried Jungmeier¹

with contributions from: Rene van Ree², Henning Jørgensen³, Ed de Jong⁴, Heinz Stichnothe⁵, Maria Wellisch⁶ and the other IEA Task 42 members

¹Contact: JOANNEUM RESEARCH Forschungsgesellschaft mbH RESOURCES – Institute for Water, Energy and Sustainability Elisabethstraße 18/II, 8010 Graz, Austria +43 316 876 1313, <u>gerfried.jungmeier@joanneum.at</u>

²WUR, Wageningen, The Netherlands; ³University of Copenhagen, Copenhagen, Denmark; ⁴Avantium Chemicals BV, Amsterdam, The Netherlands; ⁵vTI, Braunschweig, Germany; ⁶Agriculture and Rural Development, Edmonton, Canada; all members of IEA Bioenergy Task 42 "Biorefining: Co-production of Fuels, Chemicals, Power and Materials from Biomass" (<u>http://www.IEA-Bioenergy.Task42-Biorefineries.com</u>).

Content

1.	Intr	oduction2
1	The	e biorefinery Fact Sheet 2
2	Bio	refinery Fact Sheets
	2.1 using electr	4-platform (biogas, green juice, green fibres, electricity&heat) biorefinery grass silage and food residues for bio plastic, insulation material, fertilizer, icity
:	2.2 for pu	3-platform (black liquor, pulp, electricity&heat) biorefinery using wood chips IIp, paper, turpentine, tall oil, bark, electricity and heat
2	2.3	1-platform (C6 sugars) biorefinery using starch crops for bioethanol and feed 15
	2.4 chips	3-platform (C6&C5 sugar, electricity&heat, lignin) biorefinery using wood for bioethanol, electricity, heat and phenols
:	2.5 feed	1-platform (oil) biorefinery using oilseed crops for biodiesel, glycerine and 25
	2.6 bio oi	1-platform (oil) biorefinery using oil based residues for biodiesel, glycerine, I and fertilizer
	2.7 biofue	2-platform (electricity&heat, syngas) biorefinery using wood chips for FT- els, electricity, heat and waxes with steam gasification
	2.8 FT-bi	3-platform (pyrolysis oil, syngas, electricity&heat) biorefinery using straw for ofuels and methanol with oxygen gasification

Annex 1: Main assumptions and modelling choices

1. Introduction

As a first step the some selected biorefinery concepts until 2025 and their value chains, including the integration and deployment options in industrial infrastructures, are analysed. As the development status and the perspectives for implementation and development of these biorefineries are different the IEA task develops a "Biorefinery Fact Sheet" for the uniform description of the key facts of a Based on a technical description and the classification scheme the mass and energy balance is calculated for the most reasonable production capacity for each of the selected biorefineries. Then the three dimensions – economic, environmental and social - of sustainability are assessed for each biorefinery and documented in a compact form in the "Biorefinery Systems is possible. The "Biorefinery Fact Sheet" assists various stakeholders in finding their position on biorefining in a future biobased economy. The "Biorefinery Fact Sheets" will be made for the 15 most interesting "energy driven biorefinery systems" identified by IEA Bioenergy Task 42.

1 The biorefinery Fact Sheet

The "Biorefinery Fact Sheets" consist of three parts (Figure 3):

- 1. Part A: Biorefinery plant
- 2. Part B: Value chain assessment and
- 3. Annex: Methodology of sustainability assessment and data

In Part A the key characteristics of the biorefinery plant are described by giving compact information on

- classification scheme,
- description of the biorefinery,
- mass and energy balance,
- share of costs and revenues.

Figure 3: The three parts of the "Biorefinery Fact Sheet"

In Part B the sustainability assessment based on the whole value chain of the biorefinery plant is described by giving compact information on

- system boundaries,
- reference system,
- cumulated primary energy demand,
- greenhouse gas emissions and
- costs and revenues.

In Figure 7 to Figure 10 this compact information in Part B are shown for an example.

In the Annex of the "Biorefinery Fact Sheet" the main data for the sustainability assessment are documented.

One important aspect is the choice of the reference system to produce the same products as the biorefinery plant (Figure 11) and the basics of comparing a biorefinery to the reference system (Figure 12).

In a next step the "Biorefinery Fact Sheets" will be made for the 15 most interesting "energy driven biorefinery systems" identified by IEA Bioenergy Task 42. These biorefineries produce road transportation biofuels in huge amounts (biodiesel, bioethanol, biomethane and FT-diesel) from various feedstocks by coproducing high value products like food, feed, biochemicals and biomaterials.

Figure 11: Choice and definition of the reference system for the sustainability assessment in the "Biorefinery Fact Sheet"

Figure 12: Basics for the consistent comparison of biorefineries to reference systems

2 Biorefinery Fact Sheets

2.1 4-platform (biogas, green juice, green fibres, electricity&heat) biorefinery using grass silage and food residues for bio plastic, insulation material, fertilizer, electricity

"4-platform (biogas, green juice, green fibres, electricity&heat) biorefinery using grass silage and food residues for bio plastic, insulation material, fertilizer, electricity"

Part A: Biorefinery plant

The "4-platform (biogas, green juice, green fibres, electricity&heat) biorefinery using grass silage and food residues for bio plastic, insulation material, fertilizer, electricity" is shown in in Figure 1. The grass is mechanically pressed and then separated in a liquid phase ("Green juice) and solid phase ("Fibres"). The fibres are used as insulation material or are further pelletized to be used as an ingredient for bioplastic. The green juice is used to produce biogas in an anaerobic fermentation. Food residues are used as an additional feedstock for the biogas fermentation. The biogas is used in a CHP plant with an internal combustion engine to produce electricity and heat. The heat demand of the biorefinery is higher than the heat produced from biogas, so additionally natural gas is used to supply the heat. For electricity it is vice versa, so more electricity is produced than the electricity demand of the biorefinery is, so the excess electricity is sold to the grid. This type of biorefinery is already realised in several countries.

Figure 1: 4-platform (biogas, green juice, green fibres, electricity&heat) biorefinery using grass silage and food residues for bio plastic, insulation material, fertilizer and electricity

Figure 6: Comparison of the biorefinery with the conventional reference system on whole value chain (incl. "end of life management")

biorefinery plant

Task 42 Biorefining JOANNEUM JOANNEUM Biorefinery Fact Sheet

2.2 3-platform (black liquor, pulp, electricity&heat) biorefinery using wood chips for pulp, paper, turpentine, tall oil, bark, electricity and heat

"3-platform (black liquor, pulp, electricity&heat) biorefinery using wood chips for pulp, paper, turpentine, tall oil, bark, electricity and heat"

Part A: Biorefinery plant

The commercial scale "3-platform (black liquor, pulp, electricity&heat) biorefinery using wood chips for pulp, paper, turpentine, tall oil, bark, electricity and heat" is shown in Figure . The wood or wood chips are transported to the biorefinery, where the wood is mechanically debarked and chipped. Then the pulp is produced from the fibres and the rest of the wood and auxiliary chemicals end up in the black liquor. A share of the pulp is further processed to paper. Via a separation process the tall oil and the turpentine are produced and the rest of the black liquor is combusted to produce heat and electricity for the biorefinery and the surplus energy is sold. In the liquor combustion the chemicals are recovered and used again for pulp production.

This biorefinery is state of the art and commercial production facilities have an annual pulp production capacity between 200,000 up to 1,000,000 t per year. The black liquor platform contains a lot of other chemicals that are not recovered today due to economic and technical limitations. In future the broad variety of different chemical in the black liquor offers a great potential for future developments and new commercial products.

Figure 11: 3-platform (black liquor, pulp, electricity&heat) biorefinery using wood chips for pulp, paper, turpentine, tall oil, bark, electricity and heat

Figure 16: Comparison of the biorefinery with the conventional reference system on whole value chain (incl. "end of life management")

Biorefinery Fact Sheet Page 14

2.3 1-platform (C6 sugars) biorefinery using starch crops for bioethanol and feed

"1-platform (C6 sugars) biorefinery using starch crops for bioethanol and feed"

Part A: Biorefinery plant

The starch and/or crops in the "1-platform (C6 sugars) biorefinery using sugar&starch crops for bioethanol and feed" are transported to the biorefinery, where the starch is converted to C6 sugars in the enzymatic hydrolysis step.

The sugar crop e.g. from sugar beet is used to produce C6 sugars via mechanical pressing. The coproduct, sugar beet pulp, is dried and used as animal feed. The C6 sugars are fermented to bioethanol which is purified using distillation. The fermentation solids, mainly proteins, are dried and pelleted for animal feed e.g. DDGS (Dried Distillers Grains with Solubles). In the fermentation CO_2 is produced, which can be separated and used for food industry (e.g. beverage industry) or as an industrial gas (e.g. pH control of waste water). The heat and electricity are often supplied by fossil fuel energy This biorefinery is state of the art and commercial production facilities have an annual bioethanol production capacity between 100 up to 300 kt per year.

Many of the successful operating biorefineries in Europe are multi feedstock plants using different starch and sugar crops. In America most biorefineries use sugar cane or starch e.g. maize. The C6 sugars platform offers the possibilities to produce a wide range of biochemicals based on sugars. Such processes are currently under development or just starting to become commercialized. There will be a diversification of products from sugar and starch-derived C6 sugars (hexoses) towards other alcohols, chemicals and organic acids, as new biological and chemical processes to produce platform chemicals. A specific route currently under development, and likely to be commercialized in a medium term perspective is the fermentation of sugars to lipids. These lipids could be used by the oleochemical industry or to produce jet fuels, providing further integration potential between existing value chain. Also the sugar and starch based biorefinery offers interesting perspectives to integrate cereal straw (crop residues) into the supply chain, to produce C6 and C5 sugars. The use of dedicated lignocellulosic crops from agriculture is expected to increase when lignocellulosic conversion becomes more affordable.Also, as new configurations are developed, the external energy sources can be partially or fully replaced by bioenergy produced from within the process to reduce the GHG footprint.

Figure 21: 1-platform (C6 sugars) biorefinery using starch crops for bioethanol and feed

State of technology: Country:		ommercia U 27	l 2013	<u>Biorefin</u> (Produc	ery Complexity Index ts/Platform/Feedstock/Proc	esses)	not calculated vet
Main data sources:	В	IOGRACE,	JOANNEUM	RESEARC	H		
Products				Auxiliar	ies (external)		
	bioethanol	15	50 [kt/a]		electricity	0.	.30 [PJ/a]
	DDGS	209 [kt/a]			heat	2	.44 [PJ/a]
					others: various	:	5.0
Feedstock		[kt/a]	water [%]	Costs			
	corn	496	15.0%		investment costs	1	.20 [Mio€]
					feedstock costs	2	20 [€/t]
					number of employees		20 [#]
Efficiencies					mass	energy	
		input	t to products		72%	61%	
	input to	transporta	tion biofuel		30%	33%	

Figure26: Comparison of the biorefinery with the conventional reference system on whole value chain (incl. "end of life management")

Table 6: Key characteristics of biorefinery value chain

2.4 3-platform (C6&C5 sugar, electricity&heat, lignin) biorefinery using wood chips for bioethanol, electricity, heat and phenols

"3-platform (C6&C5 sugar, electricity&heat, lignin) biorefinery using wood chips for bioethanol, electricity, heat and phenols"

Part A: Biorefinery plant

The wood chips (without bark) are transported to the biorefinery, where the wood chips are pretreated for the hydrolysis to separate the sugars and the lignin. The C5&C6 sugars are fermented to bioethanol and the lignin is used to produce bio-oil via a pyrolysis step. The phenols from the bio-oil are separated and the residues are combusted to produce electricity and heat.

This biorefinery system is partly demonstrated, the production of bioethanol is demonstrated in Sweden and the pyrolysis of the lignin was tested on laboratory scale. So far the production of bioethanol from hard wood is easier to be developed than from soft wood. Recent R&D results show that the integration of a bioethanol production from wood in a pulp and paper production plant offers promising synergies like handling and logistic of wood, water and waste water treatment, electricity and steam infrastructure and personal. Realising these synergies would enable a commercial bioethanol production from wood by 2025.

Figure 31: 3-platform (C6&C5 sugar, electricity&heat, lignin) biorefinery using wood chips for bioethanol, electricity, heat and phenols

Figure 36: Comparison of the biorefinery with the conventional reference system on whole value chain (incl. "end of life management")

2.5 1-platform (oil) biorefinery using oilseed crops for biodiesel, glycerine and feed

"1-platform (oil) biorefinery using oilseed crops for biodiesel, glycerine and feed"

Part A: Biorefinery plant

The commercial scale energy driven "1-platform (oil) biorefinery using oilseed crops for biodiesel, glycerin and feed" is shown in Figure . The oilseed crops in the "1-platform (oil) biorefinery using oilseed crops for biodiesel, glycerin and feed" are transported to the biorefinery, where the vegetable oil and the animal feed are produced in the pressing step. The oil is considered as a platform, and it is esterified, producing FAME biodiesel and raw glycerin. To derive pure glycerin for pharmaceutical purposes the glycerin is subsequently distilled. The heat and electricity are typically supplied by fossil fuel energy carriers.

This biorefinery is state of the art and commercial production facilities have an annual biodiesel production capacity between 50,000 up to 150,000 t per year. Many of the successful operating biorefineries operating today are multi feedstock plants that are able to use different oilseed crops, fat and oil based residues. The oil platform and the glycerin platform offer the possibilities for a wide range of biochemicals and biomaterials that are currently under development and partly at the beginning of commercialization. For example, the oil from certain oilseeds can be further processed via hydrolysis to long-chain fatty acids for lubricants; and the glycerin can be converted to softening agents such as propandiol by fermentation or to triacetin by chemical conversion.

Also, as new configurations are developed, the external energy sources can be partially or fully replaced by bioenergy produced within the process to reduce the GHG footprint.

Figure 41: 1-platform (oil) biorefinery using oilseed crops for biodiesel, glycerine and feed

Table 9: Key characteristics of biorefinery plant

Figure 46: Comparison of the biorefinery with the conventional reference system on whole value chain (incl. "end of life management")

2.6 1-platform (oil) biorefinery using oil based residues for biodiesel, glycerine, bio oil and fertilizer

"1-platform (oil) biorefinery using oil based residues for biodiesel, glycerine, bio oil and fertilizer"

Part A: Biorefinery plant

The commercial scale energy driven "1-platform (oil) biorefinery using oil based residues crops for biodiesel, glycerin, bio oil and fertilizer" is shown in Figure 51. The oil based residues are collected from food industry and households and restaurants to the biorefinery, where the feedstock is filtered in a first step. The oil is considered as a platform, and it is esterified, producing FAME biodiesel and raw glycerin. To derive pure glycerin for pharmaceutical purposes the glycerin is subsequently distilled. A part of the oil cannot be converted to biodiesel so it is used as bio oil as energy carrier similar to heating oil. The heat and electricity are typically supplied by fossil fuel energy carriers.

This biorefinery is state of the art and commercial production facilities have an annual biodiesel production capacity between 20,000 up to 100,000 t per year. Many of the successful operating biorefineries operating today are multi feedstock plants that are able to use different oilseed crops, fat and oil based residues. The oil platform and the glycerin platform offer the possibilities for a wide range of biochemicals and biomaterials that are currently under development and partly at the beginning of commercialization. For example, the oil from certain oilseeds can be further processed via hydrolysis to long-chain fatty acids for lubricants; and the glycerin can be converted to softening agents such as propandiol by fermentation or to triacetin by chemical conversion.

Also, as new configurations are developed, the external energy sources can be partially or fully replaced by bioenergy produced within the process to reduce the GHG footprint.

Figure 51: 1-platform (oil) biorefinery using oil based residues for biodiesel, glycerine, bio oil and fertilizer

Figure 56: Comparison of the biorefinery with the conventional reference system on whole value chain (incl. "end of life management")

Biorefinery Fact Sheet Page 34

2.7 2-platform (electricity&heat, syngas) biorefinery using wood chips for FTbiofuels, electricity, heat and waxes with steam gasification

"2-platform (electricity&heat, syngas) biorefinery using wood chips for FT-biofuels, electricity, heat and waxes with steam gasification"

Part A: Biorefinery plant

The demonstration scale energy driven "2-platform (electricity&heat, syngas) biorefinery using wood chips for FT-biofuels, electricity, heat and waxes with steam gasification" is shown in Figure 61.

Within the "2-platform (electricity&heat, syngas) biorefinery using wood chips for FT-biofuels, electricity, heat and waxes with steam gasification" the wood chips are gasified with steam to produce a product gas, which is used to produce raw FT-biofuels via a catalytic reaction (FT-synthesis). The final quality of the transportation FT biofuel is reached in the upgrading step, e.g. hydroprocessing. The process residues are combusted to produce electricity and heat. As a further product waxes are produced.

Depending on the further successful development beside the steam gasification of wood, which is suitable for smaller to medium sized gasifiers also the gasification with oxygen for large applications (e.g. entrained flow gasification) might become interesting. The large amount of syngas will then be an optimal starting point to produce additional synthetic products depending on the market demand for biomass based chemicals, e.g. methanol.

Figure 61: 2-platform (electricity&heat, syngas) biorefinery using wood chips for FT-biofuels, electricity, heat and waxes with steam gasification

Figure 66: Comparison of the biorefinery with the conventional reference system on whole value chain (incl. "end of life management")

emissions of biorefinery and reference products

IEA Bioenergy JOANNEUM Task 42 Biorefining JOANNEUM RESEARCH Biorefining Biorefining

Biorefinery Fact Sheet Page 39

biorefinery plant

2.8 3-platform (pyrolysis oil, syngas, electricity&heat) biorefinery using straw for FT-biofuels and methanol with oxygen gasification

"3-platform (pyrolysis oil, syngas, electricity&heat) biorefinery using straw for FT-biofuels and methanol with oxygen gasification"

Part A: Biorefinery plant

In the fast pyrolysis the straw is used to produce pyrolysis oil and char in several decentralized locations close to the origin of the straw supply. The oil and the char are mixed together and are transported as a slurry to one central gasification plant. In the gasification a syngas is produced by using oxygen as a gasification media. This syngas is then converted to FT-biofuels in the FT-synthesis and to methanol in the methanol synthesis. The main difference of the FT- and the methanol synthesis is on pressure, temperature, catalyst and the ratio between CO and H₂ in the synthesis gas, e.g. FT-biofuel: 200 - 250 °C, 20 - 30 bar with Fe and/or Co as a catalyst. The methanol is mainly used as a chemical. Process residues are used to produce electricity and heat.

After the successful development and demonstration of fast pyrolysis of straw in future further applications and uses for the pyrolysis oil might become interesting, e.g. the direct integration of pyrolysis oil in an existing oil refinery via upgrading to a renewable diesel fuel. In addition the char from pyrolysis can be used to produce other products for chemical industry to substitute fossil based products, e.g. activated char.

Figure 71: 3-platform (pyrolysis oil, syngas, electricity&heat) biorefinery using straw for FT-biofuels and methanol with oxygen gasification

Figure 76: Comparison of the biorefinery with the conventional reference system on whole value chain (incl. "end of life management")

energy

Cumulated total

Figure 79: Estimated greenhouse gas emissions of biorefinery and reference products Figure 78: Estimated cumulated energy demand of

IEA Bioenergy Task 42 Biorefining

Biorefinery Fact Sheet Page 44

Annex: Main assumptions and modelling choices

Table 5: Main Assumptions

Table J. Main Assumptions											
BASIC ASSUMPTIONS		value	optimal	poor	description						
uncertainty range	[%]	0%	-7%	15%							
fossil energy consumption general	[GJ/kg CO ₂ -eq]	0.01			assumption						
fossil energy consumption cultivation	[GJ/kg CO ₂ -eq]	0.008			assumption						
renwabel energy share	[%]	5%									
other energy share	[%]	2%									
life time	[a]	20									
calculated interest rate	[%]	7%									
personal costs	[€/(Person*a)]	45,000									
insurance	[% of investment]	1%									
maintenance costs	[% of investment]	3%									
waste water treatment	[€/m³]	0.00									
transport distance "end of life" biochemicals	[km]	200									
gasoline price at filling station	[€/I]	1.5									
taxes	[%]	40%									
gasoline costs without tax	[€/I]	0.9									
Paseine costs minour tax	[€/GJ]	28.4									
share GHG emissions and energy demand for auxiliary materials to cultivation	[%]	1%									
share auxiliary materials costs to cultivation costs	[%]	1%									
CH4+N2O	[g/MJ]	0.2			GHG emissions from the combustions of biogene residues for the energy production (CHP, el and heat) for internal consumptionhis own need						

Table 2: Feedstock

FFFDSTOCK	yield	water content	tent heating value		co-product	GHG emissions primary energy consumption			otion	price (incl. transport)	data source	
	[t/(ha*a) or t/a]	[%]	[MJ/kgDM]	[MJ/kg]	[-]	[g CO ₂ -eq/kg]	[MJ _{foss} /kg]	[MJ _{biom} /kg]	[MJ _{renew} /kg]	[MJ _{other} /kg]	[€/t]	H
rape seed	3.11	10%	26.4	23.5	straw	668.3	5.3	23.5	0.26	0.11	414	BioGrace, assumptions
corn	3.88	15%	18.5	15.4	straw	296.5	2.3	15.4	0.12	0.05	220	BioGrace, assumptions
straw	2.50	15%	17.2	14.3	crops	26.3	0.4	14.3	0.02	0.01	63.75	BioGrace, assumptions
waste cooking oil		10%	37.1	33.1	none	0.1	0.1	33.1	0.01	0.00	850	BioGrace, assumptions
wood chips		45%	17.8	8.7	round wood	39.2	0.3	8.7	0.02	0.01	100	BioGrace, assumptions
grass sillage	10.00	65%	17.8	4.6	none	25.0	0.4	4.6	0.02	0.01	45.5	assumption, price 130 - 150 €/tDM
food residues	0.00	80%	17.8	1.6	none	0.1	0.1	1.6	0.01	0.00	8	assumption, price 6 - 45 €/t

Version 1.0, 2014-09-19

Table 3: Products

PRODUCTS	heating value	water content	CO2-emission from combustion	revenue	collecting rate	data source					
	[MJ/kg]	[%]	[g CO ₂ /kg]	[€/t]	[%]	-					
biodiesel	37.20		2,902	1057		BioGrace, assumptions					
bioethanol	26.81		2,091	762		BioGrace, assumptions					
FT-diesel	42.00		3,276	1193		assumptions					
FT-gasoline	40.00		3,120	1136		assumptions					
bio oil	21.80		1,700	635		BioGrace, assumptions					
rape seed cake	18.65		1,455	130		BioGrace, assumptions					
glycerin	16.00		1,248	150	50%	BioGrace, assumptions					
rape seed oil	36.00		2,808			BioGrace, assumptions					
cooking oil	33.15		2,585			BioGrace, assumptions					
DDGS	16.00		1,248	130		BioGrace, assumptions					
waxes	43.00		3,354	1222	50%	assumptions					
methanol	19.90		1,552	565	50%	BioGrace, assumptions					
potassium sulphate (K2SO4)	0.00		0	0		BioGrace, assumptions					
phenols	40.50		3,159	1151	50%	assumptions					
pellets	19.78		1,543	562		assumptions					
pulp	16.07		1,253	500	0%	assumptions					
paper	14.40		1,123	650	0%	assumptions					
bark (50%)	8.50		663	17	50%	assumptions					
tall oil	37.90		2,956	95	50%	assumptions					
turpentine	44.00		3,432	88	50%	assumptions					
CO2	0.00		0	20		assumptions					
fertilizer	0.00	10%	0	0							
bio plastic	28.80	0%	2,246	2000							
insulation material	15.00	0%	1,170	10							
	1		1		1						

Table 3: Auxiliary Energy

			GHG	pr	imary energ	on	price	data source	
			[g CO ₂ -eq/MJ]	[MJ _{fossil} /MJ]	[MJ _{biom} /MJ]	[MJ _{renew} /MJ]	[MJ _{others} /MJ]	[€/GJ]	[-]
	ricity	natural gas plant	125.2	2.1		0.103	0.041	22.2	BioGrace, assumptions
	aux. elect	light oil plant	169.8	2.3		0.01	0.002	22.2	GEMIS 4.5
		wood chips plant	16.6	0.1	3.1	0.001	0.001	22.2	GEMIS 4.5
	heat	natural gas boiler	69.5	1.1		0.1	0.02	4.17	BioGrace, assumptions
	×	light oil boiler	99.6	1.3		0.004	0.001	4.17	GEMIS 4.5
	au	wood chips boiler	6.8	0.1	1.2	0.001	0.0005	4.17	GEMIS 4.5

Table 4: Heat and Electricity

Heat&Electricity	reve	data source		
neatoclectricity	[€/GJ]	[€/MWh]	[-]	
heat	4.17	15	assumption	
electricity	22.2	80	assumption	

Table 5: Energy Carriers

	heating value	density	GHG	primary	energy cons	sumption	price	data source
ENERGY CARRIERS	[MJ/kg]	[kg/I o kg/Nm3]	[g CO2-eq/kg]	[MJ _{fossil} /kg]	[MJ _{renew} /kg]	[MJ _{others} /kg]	[€/t]	[-]
natural gas	36.0		2,448	40.6	2.03	0.81	3.5	BioGrace, assumptions
heating oil	42.5		3,721	51.0	2.55	1.02	3.2	BioGrace, assumptions

Version 1.0, 2014-09-19

Table 6: Auxiliary Materials

AUXILIARY MATERIALS	heating value	spec. GHG emissions	primary e	energ <mark>y</mark> consu	mption	price	data source / comment	
	[MJ/kg]	[g CO2-eq/kg]	[MJ _{fossil} /kg]	[MJ _{renew} /kg]	[MJ _{other} /kg]	[€/t]	[-]	
n-Hexane	45.11	3,632.5	14.45			2000	BioGrace, assumptions	
fuller's earth		199.8	2.54			75	BioGrace, assumptions	
phosphoric acid (H3PO4)		3,038	28.37	0.041	0.333	800	GEMIS 4.5	
potassium hydroxide (KOH)		0.00				200	BioGrace, assumptions	
hydrochloric acid (HCI)		753.2	15.43			100	BioGrace, assumptions	
sodium carbonate (Na2CO3)		1,203	13.79			150	BioGrace, assumptions	
sodium hydroxide (NaOH)		471	10.22			400	BioGrace, assumptions	
methanol	19.90	5.03	1.08			350	BioGrace, assumptions	
water						2	BioGrace, assumptions	
burnt lime		1,031	4.60			50	GEMIS 4.5	
NaOH (50%)		235.7	5.11			200	BioGrace, assumptions	
H2SO4 (97%)		208.8	3.90			50	BioGrace, assumptions	
02		370.0	5.44			100	GEMIS 4.5	
natriumchlorat		987.0	14.10			50	BioGrace, assumptions	
polypropylen (PP)	45.36	3,500.0	28.23	2.0	0.8	1000	GEMIS 4.9	
urea	9.36	1,550.0	12.24	0.044	0.029	300	GEMIS 4.9	

Table 7: Transport

TRANSPORT	spec GHG emissions	primary	data source / comment		
TRAINSFORT	[g CO ₂ - eq/(t*km)]	[MJ _{fossil} /(t*km)]	[MJ _{renew} /(t*km)]	[MJ _{other} /(t*k m)]	[-]
middle truck big truck	190.8 116.6	8.75 1.49	0.02	0.13	GEMIS 4.5 GEMIS 4.5
standard truck	81.3	0.93	0.05	0.02	BioGrace, assumptions

Table 8: References product systems

REFERENCES (mat.)	heating value		spec GHG emissions	CO2- emission primary energy consumption from					collecting rate	data source / comment
	[MJ/kg]	[MJ/I]	[g CO2-eq/kg]	[g CO2/kg]	[MJ _{fossil} /kg]	[MJ _{biom} /kg]	[MJ _{renew} /kg]	[MJ _{other} /kg]	[%]	[-]
gasoline	42.7	31.7	3,740	3,330	49.5		2.48	0.05		BioGrace, assumptions
diesel	43.1	35.3	3,776	3,362	50.0		2.50	0.05		BioGrace, assumptions
synthetic glycerin			922	0	125.0		4.50	0.20	50%	BioGrace,
soy feed	23.76		497	1,853	3.93	23.76	0.20	0.08		
potassium fertilizer			579	0	9.68		0.48	0.19		
con.phenol	32.40		1,968	2,527	66.6		0.178	0.07	50%	9 kWh/kg
potassium fertilizer (K)			81.8	0	1.32		0.013	0.0096		
plastic	28.80		5,012	2,246	80.6		4.03	1.61	50%	assumption
substitute for tall oil			1,000	0	20.0		1.00	0.40	50%	
substitute for turpentine			1,000	0	20.0		1.00	0.40	50%	
diesel by bio oil	43.1		3,776	3,362	50.0		2.50	0.05		BioGrace, assumptions
conventional waxes	43.0		3,776	3,354	50.0		2.50	0.05	50%	assumption
nitrogen fertilizer (N)			5,917	0	49.0		2.45	0.98		BioGrace, assumptions
insulation (EPS)			3,670	0	27.9		1.3000	0.5000	30%	GEMIS 4.9
polypropylen (PP)	45.36		3,500	3,538	28.2		2.00	0.80		GEMIS 4.10
HDPE	28.80		6,300	2,246	101.4		5.07	2.03	50%	BIOWERT Vortrag VDI

Table 9: References energy systems

REFERENCES (en.)	spec GHG	primary energy demand			data source / comment
	[g CO ₂ - eq/MJ]	[MJ _{fossil} / MJ]	[MJ _{renew} /MJ]	[MJ _{other} /M J]	[-]
light oil plant	170	2.3	0.01	0.00	BioGrace,
natural gas plant	125	2.1	0.10	0.04	BioGrace, assumptions
light oil boiler	100	1.3	0.00	0.00	BioGrace, assumptions
natural gas boiler	70	1.1	0.06	0.02	BioGrace, assumptions